refactor(Core/Common): restyle common lib with astyle (#3461)

This commit is contained in:
Kargatum
2020-09-12 03:50:48 +07:00
committed by GitHub
parent e15a493927
commit 3a0b0356ac
101 changed files with 4524 additions and 4418 deletions

View File

@@ -34,211 +34,211 @@ class PingOperation : public SQLOperation
template <class T>
class DatabaseWorkerPool
{
public:
/* Activity state */
DatabaseWorkerPool();
public:
/* Activity state */
DatabaseWorkerPool();
~DatabaseWorkerPool() { }
~DatabaseWorkerPool() { }
bool Open(const std::string& infoString, uint8 async_threads, uint8 synch_threads);
bool Open(const std::string& infoString, uint8 async_threads, uint8 synch_threads);
void Close();
void Close();
/**
Delayed one-way statement methods.
*/
/**
Delayed one-way statement methods.
*/
//! Enqueues a one-way SQL operation in string format that will be executed asynchronously.
//! This method should only be used for queries that are only executed once, e.g during startup.
void Execute(const char* sql);
//! Enqueues a one-way SQL operation in string format that will be executed asynchronously.
//! This method should only be used for queries that are only executed once, e.g during startup.
void Execute(const char* sql);
//! Enqueues a one-way SQL operation in string format -with variable args- that will be executed asynchronously.
//! This method should only be used for queries that are only executed once, e.g during startup.
template<typename Format, typename... Args>
void PExecute(Format&& sql, Args&&... args)
{
if (acore::IsFormatEmptyOrNull(sql))
return;
//! Enqueues a one-way SQL operation in string format -with variable args- that will be executed asynchronously.
//! This method should only be used for queries that are only executed once, e.g during startup.
template<typename Format, typename... Args>
void PExecute(Format&& sql, Args&& ... args)
{
if (acore::IsFormatEmptyOrNull(sql))
return;
Execute(acore::StringFormat(std::forward<Format>(sql), std::forward<Args>(args)...).c_str());
}
Execute(acore::StringFormat(std::forward<Format>(sql), std::forward<Args>(args)...).c_str());
}
//! Enqueues a one-way SQL operation in prepared statement format that will be executed asynchronously.
//! Statement must be prepared with CONNECTION_ASYNC flag.
void Execute(PreparedStatement* stmt);
//! Enqueues a one-way SQL operation in prepared statement format that will be executed asynchronously.
//! Statement must be prepared with CONNECTION_ASYNC flag.
void Execute(PreparedStatement* stmt);
/**
Direct synchronous one-way statement methods.
*/
/**
Direct synchronous one-way statement methods.
*/
//! Directly executes a one-way SQL operation in string format, that will block the calling thread until finished.
//! This method should only be used for queries that are only executed once, e.g during startup.
void DirectExecute(const char* sql);
//! Directly executes a one-way SQL operation in string format, that will block the calling thread until finished.
//! This method should only be used for queries that are only executed once, e.g during startup.
void DirectExecute(const char* sql);
//! Directly executes a one-way SQL operation in string format -with variable args-, that will block the calling thread until finished.
//! This method should only be used for queries that are only executed once, e.g during startup.
template<typename Format, typename... Args>
void DirectPExecute(Format&& sql, Args&&... args)
{
if (acore::IsFormatEmptyOrNull(sql))
return;
//! Directly executes a one-way SQL operation in string format -with variable args-, that will block the calling thread until finished.
//! This method should only be used for queries that are only executed once, e.g during startup.
template<typename Format, typename... Args>
void DirectPExecute(Format&& sql, Args&& ... args)
{
if (acore::IsFormatEmptyOrNull(sql))
return;
DirectExecute(acore::StringFormat(std::forward<Format>(sql), std::forward<Args>(args)...).c_str());
}
DirectExecute(acore::StringFormat(std::forward<Format>(sql), std::forward<Args>(args)...).c_str());
}
//! Directly executes a one-way SQL operation in prepared statement format, that will block the calling thread until finished.
//! Statement must be prepared with the CONNECTION_SYNCH flag.
void DirectExecute(PreparedStatement* stmt);
//! Directly executes a one-way SQL operation in prepared statement format, that will block the calling thread until finished.
//! Statement must be prepared with the CONNECTION_SYNCH flag.
void DirectExecute(PreparedStatement* stmt);
/**
Synchronous query (with resultset) methods.
*/
/**
Synchronous query (with resultset) methods.
*/
//! Directly executes an SQL query in string format that will block the calling thread until finished.
//! Returns reference counted auto pointer, no need for manual memory management in upper level code.
QueryResult Query(const char* sql, T* conn = nullptr);
//! Directly executes an SQL query in string format that will block the calling thread until finished.
//! Returns reference counted auto pointer, no need for manual memory management in upper level code.
QueryResult Query(const char* sql, T* conn = nullptr);
//! Directly executes an SQL query in string format -with variable args- that will block the calling thread until finished.
//! Returns reference counted auto pointer, no need for manual memory management in upper level code.
template<typename Format, typename... Args>
QueryResult PQuery(Format&& sql, T* conn, Args&&... args)
{
if (acore::IsFormatEmptyOrNull(sql))
return QueryResult(nullptr);
//! Directly executes an SQL query in string format -with variable args- that will block the calling thread until finished.
//! Returns reference counted auto pointer, no need for manual memory management in upper level code.
template<typename Format, typename... Args>
QueryResult PQuery(Format&& sql, T* conn, Args&& ... args)
{
if (acore::IsFormatEmptyOrNull(sql))
return QueryResult(nullptr);
return Query(acore::StringFormat(std::forward<Format>(sql), std::forward<Args>(args)...).c_str(), conn);
}
return Query(acore::StringFormat(std::forward<Format>(sql), std::forward<Args>(args)...).c_str(), conn);
}
//! Directly executes an SQL query in string format -with variable args- that will block the calling thread until finished.
//! Returns reference counted auto pointer, no need for manual memory management in upper level code.
template<typename Format, typename... Args>
QueryResult PQuery(Format&& sql, Args&&... args)
{
if (acore::IsFormatEmptyOrNull(sql))
return QueryResult(nullptr);
//! Directly executes an SQL query in string format -with variable args- that will block the calling thread until finished.
//! Returns reference counted auto pointer, no need for manual memory management in upper level code.
template<typename Format, typename... Args>
QueryResult PQuery(Format&& sql, Args&& ... args)
{
if (acore::IsFormatEmptyOrNull(sql))
return QueryResult(nullptr);
return Query(acore::StringFormat(std::forward<Format>(sql), std::forward<Args>(args)...).c_str());
}
return Query(acore::StringFormat(std::forward<Format>(sql), std::forward<Args>(args)...).c_str());
}
//! Directly executes an SQL query in prepared format that will block the calling thread until finished.
//! Returns reference counted auto pointer, no need for manual memory management in upper level code.
//! Statement must be prepared with CONNECTION_SYNCH flag.
PreparedQueryResult Query(PreparedStatement* stmt);
//! Directly executes an SQL query in prepared format that will block the calling thread until finished.
//! Returns reference counted auto pointer, no need for manual memory management in upper level code.
//! Statement must be prepared with CONNECTION_SYNCH flag.
PreparedQueryResult Query(PreparedStatement* stmt);
/**
Asynchronous query (with resultset) methods.
*/
/**
Asynchronous query (with resultset) methods.
*/
//! Enqueues a query in string format that will set the value of the QueryResultFuture return object as soon as the query is executed.
//! The return value is then processed in ProcessQueryCallback methods.
QueryResultFuture AsyncQuery(const char* sql);
//! Enqueues a query in string format that will set the value of the QueryResultFuture return object as soon as the query is executed.
//! The return value is then processed in ProcessQueryCallback methods.
QueryResultFuture AsyncQuery(const char* sql);
//! Enqueues a query in string format -with variable args- that will set the value of the QueryResultFuture return object as soon as the query is executed.
//! The return value is then processed in ProcessQueryCallback methods.
template<typename Format, typename... Args>
QueryResultFuture AsyncPQuery(Format&& sql, Args&&... args)
{
if (acore::IsFormatEmptyOrNull(sql))
return QueryResult(nullptr);
//! Enqueues a query in string format -with variable args- that will set the value of the QueryResultFuture return object as soon as the query is executed.
//! The return value is then processed in ProcessQueryCallback methods.
template<typename Format, typename... Args>
QueryResultFuture AsyncPQuery(Format&& sql, Args&& ... args)
{
if (acore::IsFormatEmptyOrNull(sql))
return QueryResult(nullptr);
return AsyncQuery(acore::StringFormat(std::forward<Format>(sql), std::forward<Args>(args)...).c_str());
}
return AsyncQuery(acore::StringFormat(std::forward<Format>(sql), std::forward<Args>(args)...).c_str());
}
//! Enqueues a query in prepared format that will set the value of the PreparedQueryResultFuture return object as soon as the query is executed.
//! The return value is then processed in ProcessQueryCallback methods.
//! Statement must be prepared with CONNECTION_ASYNC flag.
PreparedQueryResultFuture AsyncQuery(PreparedStatement* stmt);
//! Enqueues a query in prepared format that will set the value of the PreparedQueryResultFuture return object as soon as the query is executed.
//! The return value is then processed in ProcessQueryCallback methods.
//! Statement must be prepared with CONNECTION_ASYNC flag.
PreparedQueryResultFuture AsyncQuery(PreparedStatement* stmt);
//! Enqueues a vector of SQL operations (can be both adhoc and prepared) that will set the value of the QueryResultHolderFuture
//! return object as soon as the query is executed.
//! The return value is then processed in ProcessQueryCallback methods.
//! Any prepared statements added to this holder need to be prepared with the CONNECTION_ASYNC flag.
QueryResultHolderFuture DelayQueryHolder(SQLQueryHolder* holder);
//! Enqueues a vector of SQL operations (can be both adhoc and prepared) that will set the value of the QueryResultHolderFuture
//! return object as soon as the query is executed.
//! The return value is then processed in ProcessQueryCallback methods.
//! Any prepared statements added to this holder need to be prepared with the CONNECTION_ASYNC flag.
QueryResultHolderFuture DelayQueryHolder(SQLQueryHolder* holder);
/**
Transaction context methods.
*/
/**
Transaction context methods.
*/
//! Begins an automanaged transaction pointer that will automatically rollback if not commited. (Autocommit=0)
SQLTransaction BeginTransaction();
//! Begins an automanaged transaction pointer that will automatically rollback if not commited. (Autocommit=0)
SQLTransaction BeginTransaction();
//! Enqueues a collection of one-way SQL operations (can be both adhoc and prepared). The order in which these operations
//! were appended to the transaction will be respected during execution.
void CommitTransaction(SQLTransaction transaction);
//! Enqueues a collection of one-way SQL operations (can be both adhoc and prepared). The order in which these operations
//! were appended to the transaction will be respected during execution.
void CommitTransaction(SQLTransaction transaction);
//! Directly executes a collection of one-way SQL operations (can be both adhoc and prepared). The order in which these operations
//! were appended to the transaction will be respected during execution.
void DirectCommitTransaction(SQLTransaction& transaction);
//! Directly executes a collection of one-way SQL operations (can be both adhoc and prepared). The order in which these operations
//! were appended to the transaction will be respected during execution.
void DirectCommitTransaction(SQLTransaction& transaction);
//! Method used to execute prepared statements in a diverse context.
//! Will be wrapped in a transaction if valid object is present, otherwise executed standalone.
void ExecuteOrAppend(SQLTransaction& trans, PreparedStatement* stmt);
//! Method used to execute prepared statements in a diverse context.
//! Will be wrapped in a transaction if valid object is present, otherwise executed standalone.
void ExecuteOrAppend(SQLTransaction& trans, PreparedStatement* stmt);
//! Method used to execute ad-hoc statements in a diverse context.
//! Will be wrapped in a transaction if valid object is present, otherwise executed standalone.
void ExecuteOrAppend(SQLTransaction& trans, const char* sql);
//! Method used to execute ad-hoc statements in a diverse context.
//! Will be wrapped in a transaction if valid object is present, otherwise executed standalone.
void ExecuteOrAppend(SQLTransaction& trans, const char* sql);
/**
Other
*/
/**
Other
*/
//! Automanaged (internally) pointer to a prepared statement object for usage in upper level code.
//! Pointer is deleted in this->DirectExecute(PreparedStatement*), this->Query(PreparedStatement*) or PreparedStatementTask::~PreparedStatementTask.
//! This object is not tied to the prepared statement on the MySQL context yet until execution.
PreparedStatement* GetPreparedStatement(uint32 index);
//! Automanaged (internally) pointer to a prepared statement object for usage in upper level code.
//! Pointer is deleted in this->DirectExecute(PreparedStatement*), this->Query(PreparedStatement*) or PreparedStatementTask::~PreparedStatementTask.
//! This object is not tied to the prepared statement on the MySQL context yet until execution.
PreparedStatement* GetPreparedStatement(uint32 index);
//! Apply escape string'ing for current collation. (utf8)
unsigned long EscapeString(char* to, const char* from, unsigned long length)
{
if (!to || !from || !length)
return 0;
//! Apply escape string'ing for current collation. (utf8)
unsigned long EscapeString(char* to, const char* from, unsigned long length)
{
if (!to || !from || !length)
return 0;
return mysql_real_escape_string(_connections[IDX_SYNCH][0]->GetHandle(), to, from, length);
}
return mysql_real_escape_string(_connections[IDX_SYNCH][0]->GetHandle(), to, from, length);
}
//! Keeps all our MySQL connections alive, prevent the server from disconnecting us.
void KeepAlive();
//! Keeps all our MySQL connections alive, prevent the server from disconnecting us.
void KeepAlive();
char const* GetDatabaseName() const
{
return _connectionInfo.database.c_str();
}
char const* GetDatabaseName() const
{
return _connectionInfo.database.c_str();
}
void EscapeString(std::string& str)
{
if (str.empty())
return;
void EscapeString(std::string& str)
{
if (str.empty())
return;
char* buf = new char[str.size() * 2 + 1];
EscapeString(buf, str.c_str(), str.size());
str = buf;
delete[] buf;
}
char* buf = new char[str.size() * 2 + 1];
EscapeString(buf, str.c_str(), str.size());
str = buf;
delete[] buf;
}
private:
private:
void Enqueue(SQLOperation* op)
{
_queue->enqueue(op);
}
void Enqueue(SQLOperation* op)
{
_queue->enqueue(op);
}
//! Gets a free connection in the synchronous connection pool.
//! Caller MUST call t->Unlock() after touching the MySQL context to prevent deadlocks.
T* GetFreeConnection();
//! Gets a free connection in the synchronous connection pool.
//! Caller MUST call t->Unlock() after touching the MySQL context to prevent deadlocks.
T* GetFreeConnection();
private:
enum _internalIndex
{
IDX_ASYNC,
IDX_SYNCH,
IDX_SIZE
};
private:
enum _internalIndex
{
IDX_ASYNC,
IDX_SYNCH,
IDX_SIZE
};
ACE_Message_Queue<ACE_SYNCH>* _mqueue;
ACE_Activation_Queue* _queue; //! Queue shared by async worker threads.
std::vector<std::vector<T*>> _connections;
uint32 _connectionCount[2]; //! Counter of MySQL connections;
MySQLConnectionInfo _connectionInfo;
ACE_Message_Queue<ACE_SYNCH>* _mqueue;
ACE_Activation_Queue* _queue; //! Queue shared by async worker threads.
std::vector<std::vector<T*>> _connections;
uint32 _connectionCount[2]; //! Counter of MySQL connections;
MySQLConnectionInfo _connectionInfo;
};
#endif